If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-4X-3=0
a = 1; b = -4; c = -3;
Δ = b2-4ac
Δ = -42-4·1·(-3)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{7}}{2*1}=\frac{4-2\sqrt{7}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{7}}{2*1}=\frac{4+2\sqrt{7}}{2} $
| 5x+11+18x+11=62 | | 2e-1+5e-8=180 | | 8=1.6/x | | 3w+2=8w | | 4=15−x | | x=15+4 | | 1/2r+23/4r-1=1/4r+6 | | 8-+h=10 | | 5x-2=3x+32;x-1 | | 4−8(y−6)=76 | | x/140=3/100 | | 6v-5=2v-3 | | (10x+3)/3-(3x-1)/5=x-2 | | 3x-11=-5(x+1)+10 | | 10x+5=x^2-5x+7x+20 | | ½m+¼m=9 | | 10x-24=6x+12 | | 21(2-y)+12y=51 | | 2y-3=4y+7 | | 273x=7346x4876-353x+23x | | -34=-5u+2(u-8) | | (-3)+5y=7 | | 12(8c-8)=7c-4 | | 12v=28+5v | | (x-12)•-3=-54 | | 5/7=1/7+3x | | A+4b=78 | | x-3(2x-1)=11 | | m2=256 | | –10−6y=–8 | | 12x-6x+198=12x+114 | | 213=164-w |